

Exponential growth and decay

1.

Exponential Functions

An exponential function is any function in the form:

Consider $f(x) = 2^x$

X	-3	-2	-1	0	1	2	3
У	¹ / ₈	1⁄4	1/2	1	2	4	8

These points lead to the following graph:

(i) $y = 2^x$ passes through the points (0,1) & (1,2).

- (ii) As $x \to \infty y \to \infty$ however as $x \to -\infty y \to 0$.
- (iii) The graph shows a GROWTH function.

If $y = 6^{3.2}$ find an approximation for y.

Solution:

Use these keys on your calculator:

$$x^{y}$$
 or y^{x} or \wedge

Press

 $6^{3\cdot 2} \approx 309\cdot 1$

Heinemann, p.280, EX 15A, Q1

Example 2			
Solve for <i>x</i> : ((a) $7^x = 117649$	(b) $6^x = 42$	2
Solution:		An <u>exact</u> solution for	
1. Make a guess	(a) $7^x = 1176$	549 $a^{x} = n$ is: $x = \frac{\log(n)}{\log(a)}$	
Too big!!	\longrightarrow 7 ¹⁰ = 282 ²	475249 7 x^{y}	10
Too small!!	\rightarrow 7 ⁵ = 1680	$7 x^{y}$	5
Too big!!	\rightarrow 7 ⁸ = 5764	801	
	_6		

Bingo!! $\P = 7^6 = 117649$

(b) $6^x = 42$ (a) $7^x = 117649$ Solve for *x*: An exact a n Solution: solution for (b) $\dot{6}^x = 42$ $a^{x} = n$ is: $\log(n)$ x = $\log(a)$ $x = \frac{\log(42)}{\log(6)}$ x = 2.08603.... $\Rightarrow x \approx 2 \cdot 1$

Heinemann, p.280, EX 15A, Q3

Exponential Growth and Decay

If base is bigger than 1 we have <u>exponential growth</u>. If base is between 0 and 1 we have <u>exponential decay</u>.

If base is 1 we get straight line y = 1

A useful formula

$$P_n = m^n P_0$$

The population of developing nation is increasing at a rate of 15% per annum. How long will it take for the population to double?

Solution:

$$P_n = double = 2$$

$$P_n = m^n P_0$$

$$m = 100\% + 15\% = 1.15$$

$$\Rightarrow 2 = 1 \text{gl} 5^n \times 1$$

 $n = ???? \implies 1 ext{gl} 5^n = 2$

 $P_0 = 1$

So population doubles within 5 years

n = 4.9594...

 $n = \frac{\log(2)}{\log(1.15)}$

Heinemann, p.283, EX 15C, Q1

$$P_n = m^n P_0$$

The population of Scotland is decreasing at a rate of 2% per annum. How long will it take for the population to: (a) drop from 5million to 4.4 million? (b) halve ? $P_n = m^n P_0$ **Solution to (a):** $P_n = 4 \cdot 4$ million $\Rightarrow 4 \cdot 4 = 0 g 98^n \times 5$ m = 100% - 2% = 0.98n = ???? $\Rightarrow 0g98^n = \frac{4\cdot 4}{5} = 0\cdot 88$ $P_0 = 5$ million $n = \frac{\log(0.88)}{\log(0.98)}$ So population drops to 4.4m within 7 years n = 6.3275...

$$P_n = m^n P_0$$

The population of Scotland is decreasing at a rate of 2% per annum. How long will it take for the population to: (a) drop from 5million to 4.4 million? (b) halve ? $P_n = m^n P_0$ **Solution to (b):** $P_{n} = 1$ $1 = 0.98^{n} \times 2$ m = 100% - 2% = 0.98n = ???? $\Rightarrow 0g98^n = \frac{1}{2} = 0.50$ $P_0 = 2$ $n = \frac{\log(0.50)}{\log(0.98)}$ So population halves within 35 years n = 34.3096...

Heinemann, p.283, EX 15C, Q2, 3 & 7